CHILLER

Microcanal

Fluido Sintético

Baja Carga de Fluido Refrigerante

Fluido Sintético

Baja Carga de Fluido Refrigerante

CARACTERÍSTICAS TÉCNICAS

- Condensador microcanal de aluminio
- Tuberías en acero al carbono, con alta durabilidad
- Evaporador a placas soldadas
- Dos compresores del tipo alternativo semihermético
- Dos circuitos de refrigeración independientes
- · Sistema con expansión seca en el evaporador
- Refrigeración por agua o solución
- Panel de control micro-procesado

DIFERENCIALES

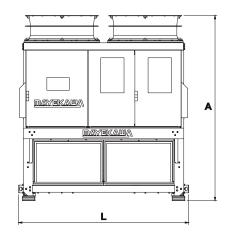
- De simple instalación, funcionamiento y mantenimiento
- Equipo tipo PLUG & PLAY
- Baja frecuencia de mantenimiento
- Condensación por aire (no es necesario utilizar torres de refrigeración)
- Baja carga de fluido refrigerante
- Filtración del aire de condensación a través de pantallas laterales desmontables y lavables, lo que garantiza una mayor circulación del aire y un fácil acceso para el manten-
- Bajo nivel de ruido
- Diseñado para aplicaciones comerciales con ingeniería industrial
- Variador de frecuencia en los motores de los compresores
- Rango de control del 25% al 100% de la capacidad total
- Ventiladores con motor EC
- Alto desempeño COP y IPVL

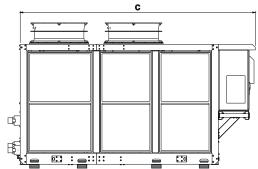
TECNOLOGÍA MAYEKAWA: MICROCANAL

- Hasta un 50% de reducción de la carga de fluido refrigerante
- Operación a alta temperatura ambiente Reducción del peso final del equipo
- Alta eficiencia en relación a otros tipos de condensadores

PRINCIPALES REFRIGERANTES

• R-404A, R-507C, R-134A y R-449A. HFOs bajo consulta


OPCIONALES


- Pintura marítima
- Bomba primaria

ÁREAS DE APLICACIÓN

- Bebidas/Lácteos / Alimentos Aire acondicionado / Plástico
- Química/Petroquímica
 - Caucho / Automotriz
- Farmacéutica/ Hospitalaria
- Entre otros

DIMENSIONES

TABLA DE CAPACIDADES

Modelo	Capacidad Nominal					con	Vazão de água de Processo		Cantidad de Fluido	١	Dimensioes			
	60 Hz		50 Hz		IPLV	СОР	60 Hz	50 Hz	Refrigerante	С	L	Α		
	TR	kW	TR	kW			m³/h	m³/h	kg	mm	mm	mm	kg	
URA-F50	50	176	42	147	4,0	3,0	30	25	17	4.000	2.200	2.400	2.700	
URA-F75	75	263	63	221	4,0	3,0	45	38	27	4.600	2.200	2.400	3.400	
URA-F100	100	351	84	295	4,2	3,1	60	51	38	6.000	2.200	2.400	4.100	

Tabla basada en las condiciones: temperatura de retorno del proceso: 12 °C; temperatura de salida: 7 °C - temperatura ambiente: 30 °C, fluido refrigerante: R-404A Cálculo del IPLV según la norma AHRI estándar 551/591 (SI) a 60 Hz. Condiciones de diseño diferentes a las de la tabla bajo pedido.